Fast Lattice Point Enumeration with Minimal Overhead

نویسندگان

  • Daniele Micciancio
  • Michael Walter
چکیده

Enumeration algorithms are the best currently known methods to solve lattice problems, both in theory (within the class of polynomial space algorithms), and in practice (where they are routinely used to evaluate the concrete security of lattice cryptography). However, there is an uncomfortable gap between our theoretical understanding and practical performance of lattice point enumeration algorithms. The algorithms typically used in practice have worst-case asymptotic running time 2 2), but perform extremely well in practice, at least for all values of the lattice dimension for which experimentation is feasible. At the same time, theoretical algorithms (Kannan, Mathematics of Operation Research 12(3):415-440, 1987) are asymptotically superior (achieving 2 logn) running time), but they are never used in practice because they incur a substantial overhead that makes them uncompetitive for all reasonable values of the lattice dimension n. This gap is especially troublesome when algorithms are run in practice to evaluate the concrete security of a cryptosystem, and then experimental results are extrapolated to much larger dimension where solving lattice problems is computationally infeasible. We introduce a new class of (polynomial space) lattice enumeration algorithms that simultaneously achieve asymptotic efficiency (meeting the theoretical n = 2 logn) time bound) and practicality, matching or surpassing the performance of practical algorithms already in moderately low dimension. Key technical contributions that allow us to achieve this result are a new analysis technique that allows us to greatly reduce the number of recursive calls performed during preprocessing (from super exponential in n to single exponential, or even polynomial in n), a new enumeration technique that can be directly applied to projected lattice (basis) vectors, without the need to remove linear dependencies, and a modified block basis reduction method with fast (logarithmic) convergence properties. The last technique is used to obtain a new SVP enumeration procedure with Õ(n) running time, matching (even in the constant in the exponent) the optimal worst-case analysis (Hanrot and Stehlé, CRYPTO 2007) of Kannan’s theoretical algorithm, but with far superior performance in practice. We complement our theoretical analysis with a preliminary set of experiments that not only support our practicality claims, but also allow to estimate the cross-over point between different versions of enumeration algorithms, as well as asymptotically faster (but not quite practical) algorithms running in single exponential 2 time and space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS

The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...

متن کامل

A fast algorithm for identifying Friends-of-Friends halos

We describe a simple and fast algorithm for identifying friends-of-friends clusters and prove its correctness. The algorithm avoids unnecessary expensive neighbor queries, uses minimal memory overhead, and rejects slowdown in high over-density regions. We define our algorithm formally based on pair enumeration, a problem that has been heavily studied in fast 2-point correlation codes and our re...

متن کامل

The Enumeration of Lattice Paths 3

We survey old and new results on the enumeration of lattice paths in the plane with a given number of turns, including the recent developments on the enumeration of nonintersecting lattice paths with a given number of turns. Motivations to consider such enumeration problems come from various elds, e.g. probability, statistics, combinatorics, and commutative algebra. We show that the appropriate...

متن کامل

On the Extremality of an 80-Dimensional Lattice

We show that a specific even unimodular lattice of dimension 80, first investigated by Schulze-Pillot and others, is extremal (i.e., the minimal nonzero norm is 8). This is the third known extremal lattice in this dimension. The known part of its automorphism group is isomorphic to SL2(F79), which is smaller (in cardinality) than the two previous examples. The technique to show extremality invo...

متن کامل

Application of Intelligent Water Drops in Transient Analysis of Single Conductor Overhead Lines Terminated to Grid-Grounded Arrester under Direct Lightning Strikes

In this paper, Intelligent water drop algorithm (IWD) is used to analyze single overhead line connected to grid-grounded arrester. In this approach, at first Norton’s equivalent circuit of the overhead line over lossy soil is computed by method of moments (MoM) and then for the problem under consideration, a nonlinear equivalent circuit in the frequency domain is proposed. Finally applying inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014